
Minimum System Requirements

- * 8" telescope
 - * ~1m effective focal length
 - * Equatorial mount or derotator
 - * Tracking at lunar rate
- * Astronomical video camera with adapter to fit telescope
 - * NTSC or PAL
 - * 1/2" detector
- * Digitizer for digitizing video and creating a 720x480 .avi
 - * Segment .avi to files less than 1GB (8000 frames)
- * Time encoder/signal
 - * GPS timestamp or WWV audio
- * PC compatible computer
 - * ~500GB free disk space
- * Software for detecting flashes

System Examples

- * Telescopes:
 - 1) 10" f/4.7 Newtonian
 - 2) 14" (355mm) f/8 Meade RCX400 on an equatorial wedge with a 0.33x Optec focal reducer
 - 3) 20" (500mm) f/8.1 from Ritchey Chretien Optical Systems on a Paramount ME with an Optec focal reducer spaced for 0.25x
- * Pyxis rotator to adjust camera angle
- * C-mount 1 1/4" adapter and baffle
- * ASTROVID StellaCam-EX (Sony HAD/EX chip) or Watec Ultimate 902H2 1/2" CCD
- * SONY Video Walkman, GV-D800 NTSC, used as a FireWire digitizer
- * KIWI-OSD GPS time encoder
- * ICOM R8500 receiver for WWV time signal (if GPS not available)
- * HP 2GHz Intel P4 with 1GB RAM
 - * 480GB, 7200rpm SATA hard drive
 - * FireWire card
- * Software
 - * Windows XP
 - * WinDV, used for recording and segmenting an .avi; vid+auds setting, segmented to 8000 frames
 - * LunarScan, used to locate impact flash candidates in an .avi
 - * VirtualDub, used for making flash and stellar calibration video clips
 - * Virtual Moon Atlas, used to locate the position of the flash on the moon

